

UEFI is not your enemy

Leif Lindholm

LinuxTag 2014

●Background

What is UEFI

What is good about it?

What is bad about it?

Final bits

Overview

UEFI has managed to acquire a bit of a bad reputation in the open
source/free software community. This presentation aims to:

● set the record straight about what problems exist out there in the UEFI
ecosystem

● explain how they relate to the basic UEFI standard and to the
codebase

● (and hopefully dispell some misunderstandings)

I have started hearing things which would in the past just have been
shrugged off as BIOS bugs now referred to as "UEFI secure boot bollox
on a slippery slope to ensure you will not be able to run Linux on your
hardware”.

In order for the rest of the presentation to be of any value, I need to
start by attempting to explain how UEFI is not the evil plot by the
industry to enforce device lockdown.

And even if you have already made your mind up that the very
concept of binary signing is evil because it is possible to use it for
device lockdown, this presentation will hopefully help clarify which
bits you should focus on opposing.

First, in order of decreasing level of nefariousness, I will go through
four levels of distinct concepts which all to some extent form part of
what people tend to bundle together under the banner "UEFI
Secure Boot" (or sloppily, just "secure boot", or even just “UEFI”):

● Microsoft logo requirements for Windows 8
● UEFI Secure Boot
● UEFI
● Shim

UEFI != ACPI

Another common theme in certain discussions
(certainly in the ARM camp) is bundling UEFI
and ACPI together.

UEFI provides mechanisms (defined by the
standard) for the firmware to present ACPI data
to the operating system.

The same methods can be used to present
device-tree data.

Microsoft logo requirements

As part of the launch of Windows 8, Microsoft wrote down some rules about how the
firmware on _any_ devices that ship with Windows preinstalled must operate. Part of
this was that it must be able to cryptographically verify the signature of any images it
loads, using the UEFI Secure Boot protocol.

“For logo-certified Windows RT 8.1 and Windows RT PCs, Secure Boot is required
to be configured so that it cannot be disabled.”

For x86 devices, this document explicitly states that this signature checking
mechanism must be possible to disable. For Windows RT (currently all ARM)
devices, this document explicitly states that this signature checking mechanism
must NOT be possible to disable.

This annoys me to no end, but from Microsoft's point of view, it's Windows vs.
Windows RT - and RT devices will only ever run the OS shipped with it (yeah, right!).

Logo requirements #2

The entirely obvious problems with this are exacerbated by the
facts that:

● the implementation details (and shortcomings of the UEFI
specification prior to 2.4) mandate only one key can be
registered, meaning all OS installers must use the same key.

● Microsoft, for all intents and purposes, are their own CA for
Windows installers. Hence anyone who wants to install software
on anything shipped with Secure Boot enabled must have their
installer signed by Microsoft.

UEFI Secure Boot

UEFI Secure Boot is a standard for supporting, and enforcing, the
cryptographic verification of loaded images before they can be executed.
That is all it is.

It depends entirely on hardware, software that comes before it, and
software that comes after it to actually achieve something that with a
straight face could be called secure boot. So just as if you have a color
blind (or obnoxious) friend with a cute red pet lizard called Green, just
remember that in the context of the UEFI environment, Secure Boot is a
name, not a description.

I am not actually going to dwell much on the use of UEFI Secure Boot in
the rest of the presentation.

UEFI

UEFI does not mandate the use of Secure Boot. Nor does it
mandate that when Secure Boot exists, there should be anything
restricting the device owner from disabling it.

Hating UEFI because it is possible to mandate that it must only run
signed images makes about as much sense as hating Linux
because you can run software that uses DRM (Spotify, flash) on it.

“The threat is not the UEFI specification itself, but in how computer
manufacturers choose to implement the boot restrictions.“ - FSF

Shim
Shim is a UEFI application that also installs a UEFI protocol for use by other
applications. It was written by Matthew Garret, in order to make it possible to load
binaries _not_ signed by the primary firmware key.

A utility that just sidestepped the chain-of-trust checking would be unlikely to be signed
by any serious CA, so what Shim does is simply providing a second level of
authentication; a key database that can be kept in addition to the primary firmware key,
and let the operator securely add/remove keys (given proper hardware implementation).

Used by commercial distro vendors in conjunction with GRUB and an out-of-tree patch
providing support for using the shim protocol for loading kernel/initrd on x86.

The FSF recognised Matthew's efforts in this area by giving him their Award for
Advancement of Free Software in 2014.

Background

● What is UEFI

What is good about it?

What is bad about it?

Final bits

What is UEFI?

UEFI is something almost unique in the history of mankind; it is
a specification for a firmware architecture, which has gained
critical mass in the (commercial) community and is already the
defacto standard for x86 machines.

Moreover, UEFI is only the specification - not the
implementation.

The origin is EFI, the Extensible Firmware Interface developed
by Intel/HP for the IA64 architecture. Version 1.10 was handed
over to the UEFI Forum as the starting point of the UEFI
specification.

Why was it needed?

It replaces BIOS: a horrible, outdated piece of crud, tied to an
architecture that has not really existed for decades. A "secret
sauce" piece of software reverse-engineered out of the original
IBM PC and then bolted onto for as long as was possible,
before it simply could no longer be extended to support more
RAM, larger hard drives or fundamental changes to system
boot architecture. An entirely closed world run by a very small
group of companies all busy duplicating each other's efforts.

UEFI is all nice and shiny!

Well, no.

But at least its overall architecture is 20+ years more modern
than BIOS. It was developed clean for IA64, and it is actually
fairly well designed.

But it is still a firmware infrastructure, and hence horrible.

TianoCore + edk2

On releasing the specification, Intel also released the overall
framework (but not the platform support code) into an open
source project called TianoCore. TianoCore does its overall
development in the edk2 (EFI Development Kit v2) tree.

It is an active project, contributed to by both hardware, BIOS
and software vendors. But the “UEFI BIOS” in modern PCs is
augmented with additional bits and bobs provided by the BIOS
vendors.

Background

What is UEFI

● What is good about it?

What is bad about it?

Final bits

In general

It provides a standardised execution environment, into which
any boot loader, device driver or boot time configuration utility
can be installed.

This execution environment provides things like direct block
access support, direct Ethernet support, console support - all
portable across any implementation (in theory – and usually in
practise).

Filesystem support

● It has explicit support for GUID Partition Table (death to MBR!).

● While it mandates VFAT, Microsoft have released their VFAT
driver with explicit patent grants and stuff for uses in UEFI
firmware.

● Support for additional filesystems can be added by loading
drivers. The rEFInd boot program, for example, comes with a
GPLd ext2 driver.

Extensible (the 'E')

Supports running applications and loading drivers and protocols
(think “shared libraries”).

Expansion cards can have drivers installed into the EFI system
partition, or in an option ROM, and loaded automatically on boot.

Versioned APIs.

Even supports architecture independent applications/drivers via
EBC (EFI Byte Code).

Runtime Services

While somewhat horriffic from a system design point of view (my
description is that it is somewhat like bits of UEFI hanging around post
boot to act as a shared library for the kernel), it provides an
unparallelled level of integration between operating system and
firmware.

Lets the operating system set environment variables, including boot
images and priority order of those – in Linux using efibootmgr, which
simply operates on /sys files.

“Capsules” provides a standardised interface from within the operating
system to do things like scheduling a firmware update on next reboot.

Standardised interface for system reboot/poweroff and RTC access.

Secure Boot

No, seriously.

Where the device owner is in control of this
mechanism (and the adjacent hardware and software
are doing the right thing), this can be a quite useful
security feature.

Just ship the system in “setup mode” and nobody
gets hurt.

It has a written specification

This may not seem to be very much, but it is
huge.

It has a written specification

It has a conformance test suite

This may not seem to be very much, but it is
huge.

Critical mass

Known to work over at least 4 different
architectures.

Handy if you want to slot seamlessly into the
existing <whatever is cool this week>scale
server exosystem.

Background

What is UEFI

What is good about it?

● What is bad about it?

Final bits

Specification

Behind a registration wall.

That registration requires acknowledging that
implementation is restricted to UEFI forum
members.
– ...But membership at “adopter” level is costless, and

available either as organisation or individual.

Source code

Well, UEFI does not exactly come entirely without legacy:

● drivers and executables are PE/COFF format (!)

● APISpecificationSyntaxIsUngodlyNeverendingCamelCase().

– And coding style is Windows^M
● Repository is svn, but there are official git mirrors.

– Of course, mixing git and svn has its own problems.
● UCS-2, not UTF.

● Test suite has historically only been available to licensees (and
they have only received it as a .zip file drop). But it has now
moved to a (restricted-access) github repository.

//

// Define the maximum extended data size that is supported when a status code is reported.

//

#define MAX_EXTENDED_DATA_SIZE 0x200

EFI_STATUS_CODE_PROTOCOL *mReportStatusCodeLibStatusCodeProtocol = NULL;

EFI_EVENT mReportStatusCodeLibVirtualAddressChangeEvent;

EFI_EVENT mReportStatusCodeLibExitBootServicesEvent;

BOOLEAN mHaveExitedBootServices = FALSE;

/**

 Locate the report status code service.

 Retrieve ReportStatusCode() API of Report Status Code Protocol.

**/

VOID

InternalGetReportStatusCode (

 VOID

)

{

 EFI_STATUS Status;

 if (mReportStatusCodeLibStatusCodeProtocol != NULL) {

 return;

 }

 if (mHaveExitedBootServices) {

 return;

 //

 // Check gBS just in case ReportStatusCode is called before gBS is initialized.

 //

 if (gBS != NULL && gBS->LocateProtocol != NULL) {

 Status = gBS->LocateProtocol (&gEfiStatusCodeRuntimeProtocolGuid, NULL, (VOID**) &mReportStatusCodeLibStatusCodeProtocol);

 if (EFI_ERROR (Status)) {

 mReportStatusCodeLibStatusCodeProtocol = NULL;

 }

 }

}

Tianocore edk2

● Contains no* platform support
– BSD licensed, and partly due to this, partly due to

historic ecosystem, very low availability of device
drivers.

CSM

Compatibility Support Module. “BIOS emulation” -
backwards compatibility mode available in early PC ports.

Apart from carrying old crud over, having this support
meant manufacturers didn't bother testing actually
booting with UEFI properly, and there were many horrible
bugs.

It is finally dying.

Background

What is UEFI

What is good about it?

What is bad about it?

● Final bits

Linaro

Linaro maintains a tree of edk2 with added support for a
few platforms.
– https://git.linaro.org/uefi/linaro-edk2.git

Member landing teams keep “their” platforms from
bitrotting.

We also do various bits of peripheral (ARM) development –
GRUB, Linux UEFI runtime services support, kernel UEFI
stub support, ACPI support.

https://git.linaro.org/uefi/linaro-edk2.git

ACPI

As of November 2013, the UEFI Forum is now the
owner of the ACPI specification.

The previous world was that for each Windows
release, the ACPI group would get together and
discuss, release a new spec, and then go into hiatus
until the next time.

And, no, UEFI does not mandate the use of ACPI.

Resources

● Build/run UEFI for AArch64
– http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=ArmPlatformPkg/AArch64

– (search for 'sourceforge aarch64 uefi')

● FSF
– http://www.fsf.org/campaigns/campaigns/secure-boot-vs-restricted-boot

● UEFI Forum - http://www.uefi.org/

– Whitepaper: UEFI Secure Boot in Modern Computer
Security Solutions

● Matthew Garrett's blog

– http://mjg59.dreamwidth.org/

http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=ArmPlatformPkg/AArch64
http://www.fsf.org/campaigns/campaigns/secure-boot-vs-restricted-boot
http://www.uefi.org/
http://mjg59.dreamwidth.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

