
Reducing iptables configuration complexity
using chains

Dieter Adriaenssens
Ghent University, Belgium

LinuxTag - Berlin
May 8th, 2014

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

1

1 Abstract

After a short introduction of iptables, a local firewall for Linux systems, we
go more into detail what chains are, and how these can be used to reduce the
complexity of an iptables configuration by grouping similar filtering rules.
This results in a better structured configuration that is easier to maintain
and that runs faster.

The audience should have a basic understanding of network concepts like
protocols, ports, IP-addresses and packets.

Contents

1 Abstract 2

2 Introduction 3

3 Brief introduction to iptables 3
3.1 Default chains . 4
3.2 Filters . 4
3.3 Targets . 5
3.4 Putting it all together . 5
3.5 More about iptables . 5

4 Optimizing configuration 6
4.1 Example setup definition . 6
4.2 ESTABLISHED state . 6
4.3 Introducing custom chains . 7
4.4 Actual configuration . 8

4.4.1 INPUT chain . 8
4.4.2 OUTPUT chain . 9
4.4.3 ICMP chain . 10
4.4.4 admin chain . 10
4.4.5 webmaster chain . 10
4.4.6 External websites chain 10

5 Conclusion 11

6 About the author 11

2

2 Introduction

Setting up a firewall on your *nix box, being it a workstation, laptop, or
server, is always a good idea. In most cases, you can do with some simple
firewall rules, f.e. on your laptop, block all incoming requests (except the
established connections, i.e. the replies on the outgoing requests you made),
or on a simple webserver (allow port 80 only).

But if you need more complex rules, f.e. a server that hosts a website
available for the entire internet, but with an SSH and samba service that
should only be available for the local subnet, or even some specific IP ad-
dresses, it becomes a bit more complex.
And if you want to filter the outgoing traffic as well, your iptables rules get
a mess after a while, and when you want to change anything, chances of a
mistake or forgetting something are high, which may result in locking your-
self out of your box (at least for remote access), or leaving something open
that shouldn’t.

To make your rules more manageable, you can make use of chains in your
iptables rules. This paper is inspired by an article that uses chains to make
iptables more efficient (faster). The goal of this paper is to get iptables rules
that are easier to read and configure, but it will result in faster handling of
packets as well.

3 Brief introduction to iptables

Iptables is a tool for creating the rulesets for netfilter, a packet filtering
framework which was introduced in the linux 2.4 kernel.

Netfilter is rule based. When an IP packet arrives, it is checked against
a set of rules, fe. :

iptables -A INPUT -m tcp -p tcp \dd dport ssh -j ACCEPT

iptables -A INPUT -m tcp -p tcp \dd dport http -j ACCEPT

iptables -A INPUT -m tcp -p tcp \dd dport https -j ACCEPT

iptables -A INPUT -j DROP

Every rule consists of several parts :

• the chain the rule belongs to

3

• parameters filtering for a type of packet

• the target : action to be taken when a packet matches

3.1 Default chains

There are several predefined chains :

• INPUT

• OUTPUT

• FORWARD

• PREROUTING

• POSTROUTING

Defining custom chains is also possible.

In this example, the rule is added to the INPUT chain :

iptables -A INPUT -m tcp -p tcp --dport ssh -j ACCEPT

3.2 Filters

Filter on packet properties :

• protocol (tcp, udp, icmp, . . .)

• destination/source port

• destination/source IP address

• in/outgoing interface (eth0, . . .)

• . . .

In this example, the filter matches any TCP packet with destination port
22 (SSH) originating from the 10.0.0.0/8 network :

iptables -A INPUT -m tcp -p tcp --dport ssh -s 10.0.0.0/8 -j ACCEPT

4

3.3 Targets

What happens if a packet matches a rule :

• ACCEPT

• DROP

• QUEUE → userspace

• RETURN → leave current chain

• LOG

• jump to a custom chain

In this example, the packet is accepted if it matches the rule :

iptables -A INPUT -m tcp -p tcp --dport ssh -j ACCEPT

3.4 Putting it all together

All rules are checked one for one, and if one matches the target is executed,
in this case, the packet is accepted :

iptables -A INPUT -m tcp -p tcp --dport ssh -j ACCEPT

iptables -A INPUT -m tcp -p tcp --dport 80 -j ACCEPT

iptables -A INPUT -m tcp -p tcp --dport https -j ACCEPT

iptables -A INPUT -j DROP

The last rule matches everything, so if a packet didn’t match a previous rule,
it will be rejected.
Remark: the order of the rules is important.

3.5 More about iptables

This was just a brief introduction to iptables/netfilter. If you want to know
more about iptables configuration, you can have a look at this excellent and
detailed tutorial by Oskar Andreasson : http://www.frozentux.net/iptables-
tutorial/iptables-tutorial.html

5

http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html

4 Optimizing configuration

4.1 Example setup definition

• A web service should be available from all networks (i.e. internet) on
port 80 (http) and 443 (https)

• The server can be managed remotely using SSH (port 22) and a web-
based admin tool (port 10000), but only from a limited set of IP ad-
dresses (admin PC’s).

• The server hosts a samba service (several TCP ports), that should only
be available from a limited set of IP addresses (admin + webmaster
PC’s).

• Outgoing connections will be filtered, but some services should be al-
lowed (DNS, DHCP, SMTP, NTP) and some external websites should
be available to get updates.

4.2 ESTABLISHED state

When using this option, you can filter for established connections. If you
define it in both the INPUT and OUTPUT rules, you only have to define in
the INPUT rules which NEW incoming requests should be allowed, and in
the OUTPUT rules which NEW outgoing request are allowed. The estab-
lished connections will be allowed and should not be redefined (making the
configuration a lot more readable and maintainable). An example allowing
only an SSH service without using the ESTABLISHED state would be :

iptables -A INPUT -p tcp --dport ssh -j ACCEPT

iptables -A INPUT -j REJECT

iptables -A OUTPUT -p tcp --sport ssh -j ACCEPT

iptables -A OUTPUT -j REJECT

Basically, every incoming/outgoing connection is dropped, except if the
incoming packet has port 22 (SSH) as destination, or if the outgoing packet
was sent from port 22 (which is the reply of the SSH server).

When using ESTABLISHED state, this will become :

iptables -A INPUT -p tcp --dport ssh -j ACCEPT

iptables -A INPUT -j REJECT

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A OUTPUT -j REJECT

6

Now, every incoming/outgoing connection is dropped, except if the in-
coming packet has port 22 (SSH) as destination, or if the packet belongs to
an established connection. Because incoming connections to port 22 are al-
lowed, the firewall will remember a packet coming in, creating a ’connection’
for the host/port the packet originates from when the SSH server replies to
it. So when the reply of the SSH server is sent out, it matches an ’established’
connection and will be allowed out.

In this example, the benefit of using the connection state is not clear,
but when more allowed incoming services are added, they only have to be
added on the INPUT chain, but not on the OUTPUT chain, because they
are covered by the ESTABLISHED rule.
In the first example (without the ESTABLISHED rule), every allowed in-
coming connection should be repeated in the OUTPUT chain, matching the
packets sent for the outgoing connection, which results in an equal amount
of rules on both chains.
If you want to do filtering in both directions (allowing incoming request for
listening services and outgoing request for remote services), this can become
very messy, and almost unmaintainable without making mistakes.

4.3 Introducing custom chains

When two services (on different ports) should be available to a limited but
identical list of IP addresses. Without using chains, for every combination
of port and IP a rule should be created :

iptables -A INPUT -p tcp -m tcp -s 10.100.2.3 --dport 22 -j ACCEPT

iptables -A INPUT -p tcp -m tcp -s 10.100.2.4 --dport 22 -j ACCEPT

iptables -A INPUT -p tcp -m tcp -s 10.100.2.7 --dport 22 -j ACCEPT

iptables -A INPUT -p tcp -m tcp -s 10.100.2.3 --dport 10000 -j ACCEPT

iptables -A INPUT -p tcp -m tcp -s 10.100.2.4 --dport 10000 -j ACCEPT

iptables -A INPUT -p tcp -m tcp -s 10.100.2.7 --dport 10000 -j ACCEPT

Resulting in a lot of rules, and when an IP address has to be changed,
added or removed, this has to be done for every corresponding rule.

When using custom chains, this can be much easier. Imagine, that you
first check if the packet matches the destination port, and if it does, jump to
a new chain, where a list of IP addresses is checked. :

7

// create new custom chain admin_IP

iptables -N admin_IP

// add rules to custom chain admin_IP

iptables -A admin_IP -s 10.100.2.3 -j ACCEPT

iptables -A admin_IP -s 10.100.2.4 -j ACCEPT

iptables -A admin_IP -s 10.100.2.7 -j ACCEPT

// drop all packets that are not matched by previous rules

iptables -A admin_IP -j DROP

// filter ports in INPUT chain

iptables -A INPUT -p tcp -m tcp --dport 22 -j admin_IP

iptables -A INPUT -p tcp -m tcp --dport 10000 -j admin_IP

As you can see, there is are several benefits of putting the IP addresses
in a separate chain :

• the list of IP addresses in the separate chain can be reused for both
ports, so they have to be defined only once.

• adding/changing/removing an IP address is much easier

• there is a better overview of the firewall rules

4.4 Actual configuration

4.4.1 INPUT chain

iptables -A INPUT -i lo -j ACCEPT

iptables -A INPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A INPUT -m state --state RELATED -j ACCEPT

iptables -A INPUT -p icmp -j icmp_in

iptables -A INPUT -p tcp -m tcp --dport 22 -j admin_IP

iptables -A INPUT -p tcp -m tcp --dport 10000 -j admin_IP

iptables -A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

iptables -A INPUT -p tcp -m tcp --dport 443 -j ACCEPT

iptables -A INPUT -p tcp -m tcp --dport 139 -j webmaster_IP

iptables -A INPUT -p tcp -m tcp --dport 445 -j webmaster_IP

iptables -A INPUT -j DROP

This is the INPUT chain, allowing :

• all local traffic (not leaving the physical PC)

8

• established and related connections

• ICMP packets (ping, etc.) are handled in a seperate chain icmp in

• some services

– SSH (tcp 22) and webmin (tcp 10000) allowed for admins (ad-
min IP chain)

– website (tcp 80 and 443) for everyone

– SMB (tcp 139 and 445) for webmasters (and admins, see definition
of webmaster IP chain)

• everything else is not allowed (dropped)

4.4.2 OUTPUT chain

iptables -A OUTPUT -o lo -j ACCEPT

iptables -A OUTPUT -m state --state ESTABLISHED -j ACCEPT

iptables -A OUTPUT -m state --state RELATED -j ACCEPT

iptables -A OUTPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

iptables -A OUTPUT -p udp -m udp --dport 53 -j ACCEPT

iptables -A OUTPUT -p udp -m udp --dport 67 -j ACCEPT

iptables -A OUTPUT -p tcp -m tcp --dport 25 -j ACCEPT

iptables -A OUTPUT -p udp -m udp --dport 123 -j ACCEPT

iptables -A OUTPUT -p tcp -m tcp --dport 80 -j ext_websites

iptables -A OUTPUT -j DROP

The OUTPUT chain, allowing :

• all local traffic (not leaving the physical PC)

• established and related connections

• ICMP replies (fe. ping)

• some remote services :

– DNS (udp 53) : name service

– DHCP (udp 67) : dynamic IP address service

– SMTP (tcp 25) : mail service

– NTP (udp 123) : time service

• external websites (tcp 80), listed in chain ext websites

• everything else is not allowed (dropped)

9

4.4.3 ICMP chain

iptables -N icmp_in

iptables -A icmp_in -p icmp -m icmp --icmp-type 8 -j ACCEPT

iptables -A icmp_in -p icmp -m icmp --icmp-type 0 -j ACCEPT

iptables -A icmp_in -p icmp -m icmp --icmp-type 3 -j ACCEPT

iptables -A icmp_in -p icmp -m icmp --icmp-type 4 -j ACCEPT

iptables -A icmp_in -p icmp -m icmp --icmp-type 11 -j ACCEPT

iptables -A icmp_in -p icmp -m icmp --icmp-type 12 -j ACCEPT

iptables -A icmp_in -j DROP

All allowed incoming ICMP message types.

4.4.4 admin chain

iptables -N admin_IP

iptables -A admin_IP -s 10.100.2.3 -j ACCEPT

iptables -A admin_IP -s 10.100.2.4 -j ACCEPT

iptables -A admin_IP -s 10.100.2.7 -j ACCEPT

iptables -A admin_IP -j DROP

A list of allowed IP addresses of admin PC’s. Everything else is not
allowed.

4.4.5 webmaster chain

iptables -N webmaster_IP

iptables -A webmaster_IP -s 10.100.2.11 -j ACCEPT

iptables -A webmaster_IP -s 10.100.2.17 -j ACCEPT

iptables -A webmaster_IP -s 10.100.2.34 -j ACCEPT

iptables -A webmaster_IP -s 10.100.2.50 -j ACCEPT

iptables -A webmaster_IP -j admin_IP

A list of allowed IP addresses of webmaster PC’s. At the end of the list,
it jumps to the admin IP chain, chaining both chains.

4.4.6 External websites chain

iptables -N ext_websites

iptables -A ext_websites -d 212.211.132.250 -j ACCEPT

iptables -A ext_websites -d 212.211.132.32 -j ACCEPT

iptables -A ext_websites -d 195.20.242.89 -j ACCEPT

iptables -A ext_websites -d 130.89.149.225 -j ACCEPT

10

iptables -A ext_websites -d 86.59.118.153 -j ACCEPT

iptables -A ext_websites -d 130.89.149.227 -j ACCEPT

iptables -A ext_websites -d 128.31.0.51 -j ACCEPT

iptables -A ext_websites -d 86.59.118.153 -j ACCEPT

iptables -A ext_websites -d 67.228.198.100 -j ACCEPT

iptables -A ext_websites -d 140.211.166.6 -j ACCEPT

iptables -A ext_websites -d 140.211.166.21 -j ACCEPT

iptables -A ext_websites -j LOG

A list of allowed external websites for updates (mirrors of Debian, webmin
and Drupal, in this example). All other requests for external websites are
logged. This can be useful for monitoring : notification of abuse, or if you
forgot to add an allowed website.

5 Conclusion

• When checking for the ESTABLISHED state, the number of rules can
be reduced, because only the initiating packet needs to be checked

• Using chains makes your rules better structured which makes them
easier to read and better maintainable

• Chains can be reused for several rules

• Chains can be chained together

• Using chains makes checking rules faster, because it only jumps to a
chain when a rule matches. Not all rules have to be checked

6 About the author

Dieter Adriaenssens currently works at Ghent University and is a sysadmin
since 2005. He is an active Open Source community member, who con-
tributed to phpMyAdmin and other projects, regularly attending and speak-
ing at conferences, like FOSDEM.
Recently, Dieter started exploring the world of Android application develop-
ment, which resulted in a first release of a navigation app a few months ago.
He lives in Ghent, Belgium and enjoys rock climbing.

• Blog : http://ruleant.blogspot.com

• Twitter : @dcadriaenssens

11

http://ruleant.blogspot.com/
https://twitter.com/dcadriaenssens

	Abstract
	Introduction
	Brief introduction to iptables
	Default chains
	Filters
	Targets
	Putting it all together
	More about iptables

	Optimizing configuration
	Example setup definition
	ESTABLISHED state
	Introducing custom chains
	Actual configuration
	INPUT chain
	OUTPUT chain
	ICMP chain
	admin chain
	webmaster chain
	External websites chain

	Conclusion
	About the author

