
Version 1.0

Cornelius Kölbel (corny@cornelinux.de)

May 2014

(CC BY-NC-SA 4.0)

Everybody knows that a password - be it simple or even complex - is a
potential vulnerability. Two factor authentication is the way to authenticate a
user not only by verifying his password but additionally asking for the
possession of a second factor - a hardware device. But nobody knows who can
be trusted. This talk invites you to trust in two factor authentication and to
trust in open source. This talk will give a short overview about possible ways to
do two factor authentication with open source and finally describe the open
source two factor system LinOTP, that can manage different kind of tokens like
Yubikey, eTokenNG OTP and smartphone apps. Thus strengthen the security of
VPNs, remote logins and hard disk encryption.

Two factor authentication – Open, trustworthy
and enterprise ready

Two factor authentication

Two factor authentication is a combination of components of what only you
know (like a password), what you have and what you are.

Authentication process

During an authentication process a person authenticates to a system as a user,
to use the system or the service of the system. So in most cases the systems
wants to identify the user – not necessarily the person.

What-you-know (password, passphrase, security questions) is specific to the
user on the system.

What-you-have (OTP token, ssh key, client certificate, smart card) is also
specific to the user on the system.

What-you-are (fingerprint, voice, retina, gait recognition) is specific to you as a
human being and has nothing to do with the system.

What you are is easy to bring along, but is not limited to the system the user is
authenticating to. The face or the gait can not only be used to authenticate to
this very system but also to identify the person in the crowd for his hole
lifetime. In contrast a password or a certificate is bound the system and can be
changed or revoked in case it was compromised. Try to change you face, when

mailto:corny@cornelinux.de

it was compromised.

Thus I prefer to only combine what-you-know and what-you-have to do two
factor authentication.

The aspect of compromise and uniqueness

Passwords

Passwords and passphrases (what-you-know) are easy to copy and the user will
not recognize, that it was copied or stolen. If it is stolen, it is still there!

This is what makes the sole use of passwords so weak and why it should be
combined with the second factor what-you-have.

Private keys

SSH-keys and client certificates are a good way to start and secure remote
access, SSH logins, VPNs and web services. But also those keys can be copied
without being noticed.

Smartcards

Smartcards store or even generate the private key on a crytographic device
that does not allow to extract the private key, making the private key non-
copyable and ensuring its uniqueness. If the private key is stolen, it needs to
be stolen with the card and the user knows that his key is compromised. He is
now able to revoke it.

To use smartcards many different drivers (for the reader, for the card) need be
installed and the application also needs to support this.

One time password tokens

One time passwords are calculated using a symmetric algorithm with a secret
key within the authentication device and in the server system. Applications do
not need to be modified, since the way of authentication (entering a password)
still looks the same to the application. Only the way the password is verified
has changed.

There are many different one time password tokens. Today many smartphone
apps offer the functionality of an OTP device. The best known might be the
Google Authenticator1. As a modern computer system the smartphone is
vulnerable to attacks on the symmetric secret key stored in the smartphone
app. Thus such an authentication device can be compromised without easily
being noticed.

The secret key in classical key fob authenticators like RSA SecureID or SafeNet

eToken PASS can probably only be copied by destroying the device. Which will
show the user, that his key was compromised. But those devices come with
another problem. The secret key must also be known to the authenticating
service. So the secret key is not only on the key fob but also on a CD or in file
deliver by the vendor and shipped by the distributor and the reseller. This is a
path of possible compromisation, that is not easily noticed.

Reprogrammable hardware devices guarantee best uniqueness of your secret
key and are not easy to compromise. The SafeNet eToken NG, the eToken PASS
using an additional programming device and the Yubico Yubikey are such
devices. It must be noted that while during the programming additional driver
software is needed all devices can be used without driver or software during
authentication.

OTP Algorithms

Since an OTP value needs to be entered into a password entry field, an
asymmetric algorithm can not be used. An asymmetric algorithm would create
such a long passphrase that could not be entered manually into a password
field.

This is why the usual OTP algorithms all use a symmetric secret key in the
algorithm and a truncation function.

HOTP2, TOTP3 and OCRA4 are open algorithms defined by the Open
Authentication Initiative5. They are all based on the SHA-algorithm. The secret
key is concatenated with a counter, the time or additional input data.

The motp6 algorithm is an open MD5 based algorithm, that concatenates the
secret key with a PIN and the time.

The Yubico Yubikeys use an AES based algorithm, where a counter and
additional information are encrypted with the secret key and can only be
decrypted by the server.

In addition there are proprietary algorithms by RSA, Vasco and kobil.

To sum up: All algorithms

• use a secret symmetric key,

• use a counter (either an event or the time)

• use an encryption or a hash function to generate the OTP value.

Still, the OTP algorithms have some limitation. While the OCRA algorithm
can be used for signing data, none of them can be used to encrypt data,
which make it hard to use OTP authentication for securing data encryption.

Implementations

There are many software implementations to authenticate users on the server
side. libpam-google-authenticator and libpam-yubico may be well known.

Both of them only allow a standalone authentication. It needs to be installed on
a single machine and the authentication device is also managed on this very
machine. The same device can not easily be used to authenticate to other
services. This is not manageable in enterprise environments.

Motp-AS7, potato8, the yubicloud9 and the Yubico Validation Server10 are
examples, where the authentication devices are managed on a central system
and many other applications or servers can authenticate against this central
system. But all these systems only support a single device type.

LinOTP

LinOTP11 is a modular authentication system, that supports many different
authentication devices and different authentication protocols like RADIUS, http
and PAM. Unfortunately only its core components are licensed under the
AGPLv3 while necessary components for grabbing users from LDAP directories
and storing audit trails to an SQL database are under a proprietary license by
its vendor LSE12 GmbH.

Nevertheless LinOTP is at the moment the most open and flexible two factor
solution for the enterprise environment. Using RADIUS it can be used to secure
existing VPN connections, SSH logins can be secured via RADIUS or PAM. There
are also first steps to secure LUKS encrypted hard disks in a manageable way13.

1 https://code.google.com/p/google-authenticator
2 https://tools.ietf.org/html/rfc4226
3 http://tools.ietf.org/html/rfc6238
4 https://tools.ietf.org/html/rfc6287
5 http://openauthentication.org/
6 http://motp.sourceforge.net
7 https://github.com/MOTP-AS/MOTP-AS
8 http://kelvin.nu/software/potato/
9 http://www.yubico.com/products/services-software/yubicloud/
10 http://www.yubico.com/products/services-software/validation-server-components/
11 http://linotp.org
12 https://lsexperts.de/enterprise-edition.html
13 https://github.com/cornelinux/yubikey-luks

https://github.com/cornelinux/yubikey-luks
https://lsexperts.de/enterprise-edition.html
http://linotp.org/
http://www.yubico.com/products/services-software/validation-server-components/
http://www.yubico.com/products/services-software/yubicloud/
http://kelvin.nu/software/potato/
https://github.com/MOTP-AS/MOTP-AS
http://motp.sourceforge.net/
http://openauthentication.org/
https://tools.ietf.org/html/rfc6287
http://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc4226
https://code.google.com/p/google-authenticator

	Two factor authentication – Open, trustworthy and enterprise ready
	Two factor authentication
	Authentication process
	The aspect of compromise and uniqueness
	Passwords
	Private keys
	Smartcards
	One time password tokens

	OTP Algorithms
	Implementations
	LinOTP

